On Lagrange interpolation with equidistant nodes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Lagrange Interpolation with Equidistant Nodes

In 1918 Bernstein [2] published a result concerning the divergence of Lagrange interpolation based on equidistant nodes. This result, which now has a prominent place in the study of the appoximation of functions by interpolation polynomials, may be described as follows. Throughout this paper let / (* ) = |x| (—1 < x < 1) and Xk,n = 1 + 2(fcl ) / ( n l ) (Jfe = 1,2,... ,n; n = 1 ,2 ,3 , . . . ) ...

متن کامل

On the Lebesgue constant for Lagrange interpolation on equidistant nodes

Properties of the Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. It is proved that the Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 and Jacobi polynomials. Moreover an integral expression of the Lebesgue function is also obtained. Finally, the asymptotic behavior of the Lebesgue constant is studied.

متن کامل

On interpolation by discrete splines with equidistant nodes

In this paper we consider discrete splines S(j), j ∈ Z, with equidistant nodes which may grow as O(|j|s) as |j| → ∞. Such splines are relevant for the purposes of digital signal processing. We give the definition of discrete B-splines and describe their properties. Discrete splines are defined as linear combinations of shifts of the B-splines. We present a solution to the problem of discrete sp...

متن کامل

Barycentric rational interpolation at quasi-equidistant nodes

A collection of recent papers reveals that linear barycentric rational interpolation with the weights suggested by Floater and Hormann is a good choice for approximating smooth functions, especially when the interpolation nodes are equidistant. In the latter setting, the Lebesgue constant of this rational interpolation process is known to grow only logarithmically with the number of nodes. But ...

متن کامل

A survey on bivariate Lagrange interpolation on Lissajous nodes

This article is a survey on recent research on bivariate polynomial interpolation on the node points of Lissajous curves. The resulting theory is a generalization of the generating curve approach developed for Lagrange interpolation on the Padua points. After classifying the different types of Lissajous curves, we give a short overview on interpolation and quadrature rules defined on the node p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1990

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700028161